GENERAL COMMENTS

- Vancomycin is a glycopeptide antibiotic with bactericidal activity
- It is active against gram-positive bacteria, including methicillin-resistant staphylococcus (MRSA)
- Vancomycin is less effective than beta-lactams against *Staphylococcus aureus* that is susceptible to cloxacillin/methicillin
- Vancomycin exhibits time-dependent killing; its effect depends primarily upon the time the concentration exceeds the organism’s Minimum Inhibitory Concentration (MIC)
- These guidelines pertain to IV vancomycin only; they do not apply to PO vancomycin, which is not absorbed
- Ensure that an adequate mg/kg dose and appropriate interval are ordered initially. Adjust the dose if necessary immediately; do not wait for a confirmatory trough level.
- When managing a severe *Staphylococcus aureus* infection (e.g., bacteremia), an Infectious Diseases consultation is strongly encouraged.

VANCOMYCIN IN ADULT PATIENTS

ADULT INITIAL DOSE

Loading dose:
- Consider using a loading dose in patients with:
 - severe infections where rapid attainment of target level of 10-15 mg/mL is desired
 - significant renal dysfunction in order to decrease the time required to attain steady state
- **Recommended dose: 25-30 mg/kg IV**
 - based on actual body weight, for 1 dose, followed by maintenance dose separated by recommended dosing interval
 - consider capping the loading dose at a maximum of 3g
- loading doses **DO NOT need to be adjusted in patients with renal dysfunction; only maintenance dosing interval requires adjustment**
- If loading dose not used then proceed with administration of a maintenance dose at recommended dosing interval

Maintenance dose:
- **15-20 mg/kg IV**
 - based on actual body weight; maximum of 2g/dose for initial maintenance doses (prior to vancomycin levels)
 - doses greater than 500 mg – round to the nearest 250 mg
 - doses less than 500 mg – round to the nearest 50 mg
Dosing interval:
- Interval depends on patient’s renal function and targeted serum vancomycin concentration

<table>
<thead>
<tr>
<th>Creatinine Clearance</th>
<th>Dosing Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>greater than 80 mL/min</td>
<td>q8-12h</td>
</tr>
<tr>
<td>40 to 80 mL/min</td>
<td>q24h</td>
</tr>
<tr>
<td>20 to 39 mL/min</td>
<td>q36h</td>
</tr>
<tr>
<td>10 to 19 mL/min</td>
<td>q48h</td>
</tr>
<tr>
<td>less than 10 mL/min</td>
<td>consider a loading dose, then adjust maintenance dose based on serial serum drug levels to target trough</td>
</tr>
</tbody>
</table>

- Estimated creatinine clearance (CrCl)

<table>
<thead>
<tr>
<th></th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrCl</td>
<td>(140-age) x weight (in kg)†</td>
<td>(140-age) x weight (in kg)† x 1.2</td>
</tr>
<tr>
<td></td>
<td>SCR (in mcmol/L)</td>
<td>SCR (in mcmol/L)</td>
</tr>
<tr>
<td>IBW</td>
<td>45.5 kg + (0.92 x cm above 150 cm) or 45.5 kg + (2.3 x inches above 60 inches)</td>
<td>IBW = 50 kg + (0.92 x cm above 150 cm) or 50 kg + (2.3 x inches above 60 inches)</td>
</tr>
</tbody>
</table>

†Use ideal body weight unless actual weight is 20% above ideal body weight (IBW), in such case use adjusted body weight.
Adjusted body weight = 0.4 x (actual body weight – IBW) + IBW
If actual weight is less than ideal body weight, use actual weight.

Clinical Pearls:
- Use care when selecting patients for q8h dosing – recommend to avoid in patients that are older and/or with multiple co-morbidities (ex. diabetes, heart failure, etc.) or where estimated creatinine clearance would be expected to be an overestimate (ex. low muscle mass in an elderly patient, dysmobility, paraplegia, etc.)
- Consider q8h dosing for patients who are younger and otherwise well with few medical co-morbidities
- The provided ranges for estimated creatinine clearance are only intended to be a guide for the selection of an empiric dosing interval and should not be used in isolation without considering patient and infection-related factors – especially when estimated creatinine clearance approaches either end of the range.

LEVELS
- The ratio of Area Under the Curve to Minimum Inhibitory Concentration (AUC/MIC) is thought to be the best pharmacokinetic parameter associated with a clinical and bacterial response to vancomycin; however, because of its relative impracticality to determine in clinical practice, trough levels are used as a surrogate for efficacy.
- Peak (post) levels are generally NOT recommended because they are not correlated with improved clinical outcome; they should only be ordered in rare circumstances to facilitate individualized patient pharmacokinetic analysis.
- Vancomycin’s efficacy depends primarily upon the time above the MIC

Target serum concentrations:
- After a thorough review of the available evidence, NB-ASC recommends a target trough level of 10-15 mg/L for ALL infections.
 - There is no reliable data to support the use of a target trough of 15-20mg/L.
 - However, there is data demonstrating that target troughs of 15-20 mg/L are associated with greater risk of nephrotoxicity.
- Vancomycin levels should always be maintained above 10 mg/L to avoid the development of resistance.
Levels are recommended in:
- patients who are severely ill
- patients with anticipated therapy duration of 7 days or greater
- patients with impaired renal function (CrCl 50 mL/min or less) or unstable renal function (change in baseline serum creatinine (Scr) of 40 mc mol/L or greater, or change of 50% or more from baseline)
- patients on dialysis
- concomitant use of other nephrotoxic drugs (i.e. aminoglycoside, NSAID, diuretics, ACEI, ARB, etc.)
- patients with altered volume of distribution or clearance of vancomycin, including:
 - morbidly obese patients (190% or greater of ideal body weight or BMI 40 kg/m² or greater)
 - cystic fibrosis
 - burns more than 20% BSA
 - pregnancy
- Routine trough (pre) levels are generally not necessary when:
 - vancomycin is used for empiric therapy as it may be discontinued once final culture results are available

Serum sampling:
- Trough (pre) levels are taken immediately before a dose (within 30 minutes)
- The timing of drug administration and sample collection must be carefully documented
- Do not hold next vancomycin dose while waiting for results of vancomycin levels unless there is a specific reason to do so, e.g. significant decline in renal function

Timing of serum levels:
- First trough level should be taken at steady state, typically
 - prior to 4th dose if q12h interval
 - prior to the 5th dose if q8h interval
- Steady state (SS) occurs in 4 to 5 half-lives and can be estimated for vancomycin by the following equations:
 - $K_e = CrCl \times 0.00083 + 0.0044$
 - $T_\frac{1}{2} = 0.693/K_e$
 - $SS = 4 \text{ to } 5 \times T_\frac{1}{2}$
- Vancomycin clearance is enhanced in obesity. Consider drawing first level sooner (i.e. before the 3rd dose if normal renal function) in morbidly obese patients

INTERPRETING TROUGH LEVELS AND ADJUSTING DOSE
- Verify the timing of the trough in relation to the dose that preceded it and the dose that followed
- Verify if the trough was taken at steady state
- Verify for changes in renal function since the trough was drawn
- Consider alternate sources of vancomycin that may be contributing to measured serum concentrations (e.g., vancomycin instilled intra-operatively, or added to cement during orthopedic surgery)
- If the trough is below the target level, ensure the dose is 15-20 mg per kg actual body weight, and consider shortening the dosing interval (e.g., if was dosed q12h, change to q8h)
- If the trough is above 15-20 mg/L, consider decreasing the dose and/or lengthening the dosing interval
- If trough level is significantly elevated (i.e. greater than 25 mg/L) hold vancomycin and use repeat levels to determine when to restart vancomycin and new dosing regimen

MONITORING
Subsequent serum levels:
- With dosage change: trough should be repeated at new steady state as described in “Levels” section
- Once target trough achieved: trough should be taken approximately every 7 days in hemodynamically stable patients; more frequently if hemodynamically unstable, renal function changing, if concurrent nephrotoxic drugs, or underlying renal dysfunction
Monitor:
- patient’s clinical response to vancomycin
- CBC at least weekly on long-term vancomycin therapy
- SCr at least twice a week initially, then at least weekly on long-term therapy; more frequent monitoring should be considered if renal function changing, if concurrent nephrotoxic drug, underlying renal dysfunction or age greater than 60.
 - If SCr increases significantly (i.e. greater than 15 – 20% from baseline), draw trough level to assess for need for dosage adjustment as vancomycin accumulation may occur

Adverse effects of vancomycin include:
- Nephrotoxicity: 5-43%; more common with higher trough levels, longer durations, critically ill patients, concomitant nephrotoxic drugs, elderly patients or pre-existing renal dysfunction; rise in SCr usually reversible upon discontinuation of vancomycin
- Red Man Syndrome: 5-10%; ensure appropriate duration of infusion to minimize risk (refer to Parenteral Drug Manual)
- Neutropenia: less than 2%, delayed onset (15-40 days), reversible

VANCOMYCIN IN PEDIATRIC PATIENTS

DEFINITIONS
- **Neonate**: 0-4 weeks of age
 - Gestational age: number of weeks from first day of the mother’s last menstrual period until the birth of the baby
 - Postnatal age: chronological age since birth
 - Corrected Gestational Age: gestational age plus postnatal age
 Ex.: baby born at 28 weeks, presently 21 days old
 corrected gestational age = 31 weeks (28 weeks + 3 weeks)
- **Infant**: 1 month to 1 year of age
- **Child**: 1-12 years of age

PEDIATRIC INITIAL DOSE

Initial dose in neonates (less than 1 month of age):

<table>
<thead>
<tr>
<th>Corrected Gestational Age (weeks)</th>
<th>Postnatal Age (days)</th>
<th>mg/kg/dose IV</th>
<th>Interval (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 or less</td>
<td>0-14</td>
<td>10 - 15</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>15 or more</td>
<td>10 - 15</td>
<td>12</td>
</tr>
<tr>
<td>30-36</td>
<td>0-14</td>
<td>10 - 15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>15 or more</td>
<td>10 - 15</td>
<td>8</td>
</tr>
<tr>
<td>37-44</td>
<td>0-7</td>
<td>10 - 15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>8 or more</td>
<td>10 - 15</td>
<td>8</td>
</tr>
<tr>
<td>45 or more</td>
<td>all</td>
<td>10 - 15</td>
<td>6</td>
</tr>
</tbody>
</table>

Initial dose in infants and children (1 month to 12 years of age):
- **Traditional**:
 - 40-60 mg/kg/day, divided in q6h-8h
 - max dose of 2g/day prior to levels
- **Alternative** (for more severe infections):
 - 15 mg/kg/dose IV q6h
 - max dose of 4g/day prior to levels
LEVELS
- Trough levels are taken 30 minutes or less prior to the next dose
- Peak levels are generally NOT recommended

Target trough levels:
- 5-15 mg/L for highly susceptible infections (e.g. coagulase negative Staphylococci bacteremia)
- 10-15 mg/L for methicillin susceptible *Staphylococcus aureus* (MSSA) infections or MRSA
- Higher exposure may be required for other syndromes such as CNS infections, endocarditis, osteomyelitis and other deep seated MRSA infections:
 - Pre (trough) levels could therefore be targeted close to 15 mg/L (i.e. 13 – 15 mg/L)
 - Pre (trough) levels that exceed 15 mg/L are associated with an increased risk of nephrotoxicity.
- First trough level should be taken at steady state, typically prior to 4th dose

INTERPRETING TROUGH LEVELS AND ADJUSTING DOSE
- Verify the timing of the trough in relation to the dose that preceded it and the dose that followed
- Verify if the trough was taken at steady state
- Verify for changes in renal function since the trough was drawn
- If the trough is below the target level, consider shortening the dosing interval
- If the trough is high, consider lengthening the dosing interval

SUBSEQUENT TROUGH LEVELS AND MONITORING
- See Adults section for guidance

VANCOMYCIN IN INTERMITTENT HEMODIALYSIS

GENERAL COMMENTS
- In patients undergoing intermittent hemodialysis, vancomycin IV is given on dialysis days, typically 3 times a week
- Give the first dose of vancomycin the day it is ordered and subsequent doses on dialysis days
- Vancomycin doses are administered during the last portion of the hemodialysis session (intradialytic administration) or after hemodialysis

DOSE
- **Patient with weight less than 70 kg:**
 - vancomycin 1000 mg IV for the first dose, then 500 mg IV for subsequent doses
- **Patient with weight 70 to 100 kg:**
 - vancomycin 1250 mg IV for the first dose, then 750 mg IV for subsequent doses
- **Patient with weight above 100 kg:**
 - vancomycin 1500 mg IV for the first dose, then 1g IV for subsequent doses

LEVELS
- **Target pre-dialysis vancomycin levels:**
 - 10-15 mg/L for ALL infections
 - Vancomycin levels are drawn before the beginning of the hemodialysis session
 - Do not hold post-dialysis vancomycin dose while waiting for results of pre-dialysis vancomycin levels unless there is a specific reason to do so
 - If the trough is below the target level, consider a top-up dose and increase the next maintenance dose accordingly
 - If the trough is high, consider decreasing the next maintenance dose
 - Vancomycin trough levels should be obtained before each dialysis until desired trough is attained. After that, vancomycin trough levels should be obtained once a week before dialysis.
VANCOMYCIN IN PREGNANCY

CONSIDERATIONS ON THE USE OF VANCOMYCIN IN PREGNANCY

- Pregnancy is associated with accelerated renal clearance of vancomycin due to increased renal blood flow
- Pregnancy is associated with higher volumes of distribution
- Pharmacokinetic changes become more pronounced in the later stages of pregnancy and gradually return to pre-pregnancy values a few days following delivery
- Dose and target trough levels same as other adults
- Will likely achieve steady state sooner
- May require higher dosage and shorter dosing intervals to achieve target levels compared to non-pregnant individuals
- Recommend routine trough levels in pregnant patients
- If target levels difficult to achieve, consider drawing two levels (trough and peak) to enable individualized pharmacokinetic calculations

OUTPATIENT VANCOMYCIN IV THERAPY

NOTES FOR TRANSITIONS TO OUTPATIENT IV VANCOMYCIN THERAPY

- Prior to discharge on outpatient IV vancomycin therapy, the healthcare team should:
 - Review the treatment plan to confirm that oral alternatives are not available or appropriate for patient management
 - Review the feasibility and safety of the treatment and care plan
 - Review the patient’s concomitant medications to identify any nephrotoxic agents (e.g. aminoglycoside, NSAID, diuretic, ACEI, ARB, etc.) and evaluate whether any should be held for the duration of treatment
 - Communicate the treatment and care plan to the patient and/or caregivers and community healthcare providers; including necessary blood work, target levels and duration of therapy
 - Communicate the importance of proper timing of blood work in relation to administration of the vancomycin dose to allow interpretation of vancomycin serum concentrations
 - Educate and inform the patient and their caregivers on the signs and symptoms of potential adverse reactions to report or act on
 - Arrange all necessary monitoring test and follow-up appointments
 - Avoid scheduling blood work on Fridays because interpretation may be delayed
REFERENCES